Vol. 3, Issue II, Apr-Jun, 2020

ISSN: 2457-1016

On SÔZ Fuzzy-Ideal of KU-Algebra

*Showq Mohammed .E **DhuhaAbdulameerKadhim

****Iraq, University of Kufa, College of Education for Girls, Department of Mathematics

ABSTRACT

In this paper, we present and study ideal in KU- Algebra, it is namedS $\hat{O}Z$ -ideal ,we provide some examples, properties and theorems about it. Also, we study the direct product of S $\hat{O}Z$ -ideals. Finally, we announce and study fuzzy S $\hat{O}Z$ -ideal of this Algebra.

Keywords: KU-algebra, fuzzy KU- ideal, σ -multiplication, fuzzy \hbar -multiplication, onto homomorphism.

1.INTRODUCTION

The perception of fuzzy subsets was defined viaZadeh in 1965 [8]. Then Iseki K.and Tanaka Sgaveconcept BCK& BCI-algebras_{respectively} [1]. After that several papers have been available by mathematicians to defined the classical mathematical concepts and fuzzy mathematical concepts .Prabpayak C. &Leerawat UpresentedKU-Algebra. They offered the Definition ofKU homomorphisms and provided some related theories in [5]. In addition, Hameed A.T, Mostafa SM.et al. [4] acquaint with the fuzzy KU-ideals of aKU-Algebra. In this paper we itemized the ideas as we talk about in abstract.In the next parts of our research.

<u>Notice</u> We will symbolize to KU- Algebra (\wp ;•,0) by \wp and every fuzzy subset by F-set

The Basic Concepts

Definition 2.1: [8]

Let $\mu: \wp \to [0,1]$ bea F-set of nonempty set \wp .

Definition 2.2: [8]

Assume \perp is a F-set of \wp . If $\perp (\tau \ell) = 0$ for every $y \in \wp$ then \perp is named empty F-set.

Definition 2.3: [8]

If \perp and ∂ are two fuzzy sets. Then : $\forall \lambda \in \wp$.

 $1 - (\bot \bigcap \partial)(\hat{\lambda}) = \min \{ \bot (\hat{\lambda}), \partial(\hat{\lambda}) \}$

 $2 - (\bot \bigcup \partial)(\lambda) = MAX \{\bot (\lambda), \partial(\lambda)\}.$

Vol. 3, Issue II, Apr-Jun, 2020

Definition 2.4: [7]

The set \wp is aKU-Algebra, with the constant and a binary operation 0, • respectively if the four conditions are satisfying :-

 $1 - (\hat{\lambda} \bullet \tau \ell) \bullet [(\tau \ell \bullet \chi)) \bullet (\hat{\lambda} \bullet \chi) = 0, \forall \hat{\lambda}, \tau \ell, \chi \in \wp$ $2 - 0 \bullet \hat{\lambda} = \hat{\lambda} , \forall \hat{\lambda} \in \wp$ $3 - \hat{\lambda} \bullet 0 = 0,$ $4 - \hat{\lambda} \bullet \tau \ell = 0 = \tau \ell \bullet \hat{\lambda} \rightarrow \hat{\lambda} = \tau \ell.$

Definition 2.5: [7] We know \perp is a fuzzy KU -ideal of \wp when : $\forall \lambda, \tau \ell, z \in \wp$. $1 - \perp (0) \geq \perp (\lambda),$ $2 - \perp (\lambda \bullet z) \geq MIN\{ \perp ((\lambda \bullet \tau \ell) \bullet z), \perp (\tau \ell) \}.$

Definition 2.6: [6]

Suppose that $\hbar \in (0,1]$ is a fuzzy \hbar -multiplication of χ define by $\chi_{\hbar}^{M}(\lambda) = \hbar \chi(\lambda); \forall \lambda \in \psi$.

Definition 2.7:[2]

Let χ be a F-set of \wp and let $\sigma \in [0, T]$. A map χ_{σ}^{T} from \wp to [0,1] is known as a fuzzy translation of χ if it is fulfills $\chi_{\sigma}^{T}(\lambda) = \chi(\lambda) + \sigma$; $\forall \lambda \in \wp$. Where T=1-sup{ $\chi(\lambda), \forall \lambda \in \wp$ }.

Theorem 2.8: [3]

Let $(\wp; \bullet, 0)$ and $(G; \bullet', 0')$ be two KU-Algebras and $\varpi : (\wp; \bullet, 0) \to (G; \bullet', 0')$ be an onto homomorphism. Then the image of any fuzzy Kuideal is also fuzzy Kuideal symbolized by $\varpi(\bot)$.

Definition 2.9: [2]

Let $\{\perp_{\varepsilon}, \varepsilon \in \varpi\}$ be a set of F-set from \wp . Define $\bigcap_{\varepsilon \in \varpi} \perp_{\varepsilon} (\lambda) = \inf_{\varepsilon \in \varpi} \{\perp_{\varepsilon} (\lambda)\}, \forall \lambda \in \wp$, $\bigcup_{\varepsilon \in \varpi} \perp_{\varepsilon} (\lambda) = \sup_{\varepsilon \in \varpi} \{\perp_{\varepsilon} (\lambda), \forall \lambda \in \wp\}.$

Fuzzy SÔZ-ideal

Definition 3.1

A fuzzy ideal \perp of \wp is named a SÔZ fuzzy ideal and denoted it by SÔZ - F -ideal of \wp if $1-\perp(0) \geq \perp(\hat{\lambda}); \quad \forall \hat{\lambda} \in \wp.$ $2-\perp(\hat{\lambda}^2 \bullet \tau \ell)) \geq MIN\{\perp(\hat{\lambda}), \perp(\tau \ell)\}; \forall \hat{\lambda}, \tau \ell \in \wp.$

Example 3.2

Let $\wp = \{0, \varepsilon, \tau, \partial\}$ be a set with the accompanying table

BHARAT PUBLICATION

http://www.bharatpublication.com/journal-detail.php?jID=25/IJTSE

Then $(\wp, \bullet, 0)$ is an KU -Algebra and defined F-set $\bot: \wp \to [0,1]$, when $\lambda \in [0,1], \lambda \succ \iota \succ \upsilon; \bot(0) = \lambda, \ \bot(\varepsilon) = \iota, \bot(\tau) = \iota, \bot(\partial) = \upsilon, \ \bot(\ell) = \upsilon$ is a SÔZ - F -ideal of \wp . Noticewe will symbolize \bot is SÔZ - F -ideal of \wp by $\bot \to \wp$.

Theorem 3.3

If \perp_{ε} be a set of SÔZ - F -ideals of \wp , $\forall \varepsilon \in \angle$, then $\bigcap_{\varepsilon \in \angle} \perp_{\varepsilon} \neq \wp$.

Proof

$$\begin{split} &1 - \bot_{\varepsilon} (0) \geq \bot_{\varepsilon} (\lambda); \forall \varepsilon \in \angle , \ \forall \lambda, \tau \ell \in \wp. \\ &\bigcap_{\varepsilon \in \angle} \bot_{\varepsilon} (0) \geq \bigcap_{\varepsilon \in \angle} \bot_{\varepsilon} (\lambda). \\ &2 - \bigcap_{\varepsilon \in \angle} \bot_{\varepsilon} (\lambda^{2} \bullet \tau \ell) \geq \inf_{\varepsilon \in \angle} \{\bot_{\varepsilon} (\lambda^{2} \bullet \tau \ell)\} \\ &= \inf_{\varepsilon \in \angle} \{ \operatorname{MIN} \{ \bot_{\varepsilon} (\lambda), \bot_{\varepsilon} (\tau \ell) \} \} \\ &= \operatorname{MIN} \{ \inf_{\varepsilon \in \angle} (\bot_{\varepsilon} (\lambda)), \inf_{\varepsilon \in \angle} (\bot_{\varepsilon} (\tau \ell)) \} \\ &= \operatorname{MIN} \{ \bigcap_{\varepsilon \in \angle} \bot_{\varepsilon} (\lambda), \bigcap_{\varepsilon \in \angle} \bot_{\varepsilon} (\tau \ell) \}. \\ &\Rightarrow \bigcap_{\varepsilon \in \angle} \bot_{i} \neq \wp. \end{split}$$

Theorem 3.4

Let \perp_{ε} be a chain of $\hat{SOZ} - F$ -ideals of \wp , $\forall \varepsilon \in \angle$. Then $\bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} \neq \wp$.

Proof

$$\begin{split} &1-\perp_{\varepsilon} (0) \geq \perp_{\varepsilon} (\hat{\lambda}); \forall \varepsilon \in \angle, \forall \hat{\lambda}, \tau \ell \in \wp. \\ &\bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} (0) \geq \bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} (\hat{\lambda}). \\ &2-\bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} (\hat{\lambda}^2 \bullet \tau \ell) \geq \underset{\varepsilon \in \angle}{\text{SUP}} \{ \perp_{\varepsilon} (\hat{\lambda}^2 \bullet \tau \ell) \} \\ &= \underset{\varepsilon \in \angle}{\text{SUP}} \{ \text{MIN} \{ \perp_{\varepsilon} (\hat{\lambda}), \perp_{\varepsilon} (\tau \ell) \} \} \\ &= \text{MIN} \{ \underset{\varepsilon \in \angle}{\text{SUP}} (\perp_{\varepsilon} (\hat{\lambda})), \underset{\varepsilon \in \angle}{\text{SUP}} (\perp_{\varepsilon} (\tau \ell)) \} \\ &= \text{MIN} \{ \bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} (\hat{\lambda}), \bigcup_{\varepsilon \in \angle} \perp_{\varepsilon} (\tau \ell) \}. \end{split}$$

Vol. 3, Issue II, Apr-Jun, 2020

 $\Longrightarrow \bigcup_{\varepsilon \in \angle} \ \bot_{\varepsilon} \not \to \wp.$

Proposition3.5

Let \perp be a SÔZ - F -ideal of \wp . Then $\neg \perp (\lambda) = {\lambda, \perp (\lambda), 1 - \perp (\lambda)}$ is alsoSÔZ - F -ideal of \wp . **Proof**

 $\neg \perp (0) = \{0, \perp (0), 1 - \perp (0)\} \ge \{\hat{\lambda}, \perp (\hat{\lambda}), 1 - \perp (\hat{\lambda})\} = \neg \perp (\hat{\lambda}).$ $2 - \neg \perp (\hat{\lambda}^2 \bullet \tau \ell) = \{\hat{\lambda}^2 \bullet \tau \ell , \perp (\hat{\lambda}^2 \bullet \tau \ell), 1 - \perp (\hat{\lambda}^2 \bullet \tau \ell)\} \ge \{\hat{\lambda}^2 \bullet \tau \ell, \text{MIN}\{\perp (\hat{\lambda}), \perp (\tau \ell)\}, 1 - \text{Min}\{\perp (\hat{\lambda}), \perp (\tau \ell)\}\}$ $= \{\hat{\lambda}^2 \bullet \tau \ell, \text{MIN}\{\perp (\hat{\lambda}), \perp (\tau \ell)\}, \text{MIN}\{1 - \perp (\hat{\lambda}), 1 - \perp (\tau \ell)\}\} = \{\hat{\lambda}^2 \bullet \tau \ell, \text{MIN}\{\perp (\hat{\lambda}), \perp (\tau \ell), 1 - \perp (\tau \ell)\}\}$ $= \{\hat{\lambda}^2 \bullet \tau \ell, \text{MIN}\{\perp (\hat{\lambda}), 1 - \perp (\hat{\lambda})\}, \text{MIN}\{\perp (\tau \ell), 1 - \perp (\tau \ell)\}\} = \{\hat{\lambda}^2 \bullet \tau \ell, -\gamma \perp (\hat{\lambda}), -\gamma \perp (\tau \ell)\}.$ $\Rightarrow \gamma \perp (\hat{\lambda}) \neq \emptyset.$

Proposition3.6

Let \perp, η be two SÔZ - F -ideals of \wp . Then $\perp \times \eta(\lambda) = MIN\{\perp(\lambda), \eta(\lambda)\}$ is alsoSÔZ - F -ideal of \wp . **Proof**

$$\begin{split} &1-\perp \times \eta(0) = \operatorname{Min}\{\perp(0), \eta(0)\} \geq \operatorname{Min}\{\perp(\lambda), \eta(\lambda)\} = \perp \times \eta(\lambda). \\ &2-\perp \times \eta(\lambda^2 \bullet \tau \ell) = \operatorname{MIN}\{\perp(\lambda^2 \bullet \tau \ell), \eta(\lambda^2 \bullet \tau \ell)\} \geq \operatorname{MIN}\{\operatorname{MIN}\{\perp(\lambda), \perp(\tau \ell)\}, \operatorname{MIN}\{\eta(\lambda), \eta(\tau \ell)\}\} \\ &= \operatorname{MIN}\{\perp(\lambda), \eta(\lambda), \perp(\tau \ell), \eta(\tau \ell)\} = \operatorname{MIN}\{\operatorname{MIN}\{\perp(\lambda), \eta(\lambda)\}, \operatorname{MIN}\{\perp(\tau \ell), \eta(\tau \ell)\}\} \\ &= \operatorname{MIN}\{\perp \times \eta(\lambda), \perp \times \eta(\tau \ell)\}. \end{split}$$
This means $\perp \times \eta \neq \wp$.

Theorem 3.7

Let $\perp \neg \wp \leftrightarrow \forall \sigma \in (0,1) \perp_{\sigma}^{M}$ is σ -multiplication of SÔZ - F-ideal of \wp

Proof: \rightarrow

Let $\sigma \in (0,1)$ buch that \perp_{σ}^{M} is σ -multiplication of \hat{SOZ} - F -ideal of \wp

$$1 - \perp_{\sigma}^{M} (0) = \perp (0) \bullet \sigma \ge \perp (\hat{\lambda}) \bullet \sigma = \perp_{\sigma}^{M} (\hat{\lambda})$$

$$2 - \perp_{\sigma}^{M} (\hat{\lambda}^{2} \bullet y) \ge \perp (\hat{\lambda}^{2} \bullet y) \bullet \sigma \ge MIN\{\perp (\hat{\lambda}), \perp (\tau \ell)\} \bullet \sigma = MIN\{\perp (\hat{\lambda}) \bullet \sigma :\perp (\tau \ell) \bullet \sigma\}$$

$$= MIN\{\perp_{\sigma}^{M} (\hat{\lambda}) :\perp_{\sigma}^{M} (\tau \ell)\}.$$

From 1 and 2 \perp_{σ}^{M} is σ -multiplication of \hat{SOZ} - F -ideal of \wp .

Proof:←

 $\begin{aligned} 1 - \perp_{\sigma}^{M} (0) \geq \perp_{\sigma}^{M} (\hat{\lambda}) , \forall \hat{\lambda} \in \wp , \perp (0) \bullet \sigma \geq \perp (\hat{\lambda}) \bullet \sigma \Longrightarrow \perp (0) \geq \perp (\hat{\lambda}). \\ 2 - \perp_{\sigma}^{M} (\hat{\lambda}^{2} \bullet \tau \ell) \geq \text{MIN} \{ \perp_{\sigma}^{M} (\hat{\lambda}), \perp_{\sigma}^{M} (\tau \ell) \} \text{ obviously} = \perp (\hat{\lambda}^{2} \bullet \tau \ell) \bullet \sigma \geq \text{MIN} \{ \perp (\hat{\lambda}), \perp (\tau \ell) \} \bullet \sigma \\ = \perp (\hat{\lambda}^{2} \bullet \tau \ell) \geq \text{MIN} \{ \perp (\hat{\lambda}), \perp (\tau \ell) \}. \end{aligned}$ From 1 and 2, we get $\perp \neq \wp$.

BHARAT PUBLICATION

Vol. 3, Issue II, Apr-Jun, 2020

Theorem 3.8

Let $f:(\wp;\bullet,0) \to (\wp';\bullet',0')$ be an endomorphism, $\perp \not \to \wp$. Then $(\perp_{\sigma}^{M})_{f}$ is σ -multiplication SÔZ - Fideals of \wp' . When $(\perp_{\sigma}^{M})_{f}(\lambda) = \perp_{\sigma}^{M} (f(\lambda))$.

Proof

Let
$$\lambda, \tau \ell \in \wp, f(\lambda), f(\tau \ell) \in \wp'.$$

 $1 - (\perp_{\sigma}^{M})_{f}(0) = \perp_{\sigma}^{M} (f(0)) = \perp_{\sigma}^{M} (0') = \sigma \bullet \perp (0') \ge \sigma \bullet \perp (f(\lambda)) = \perp_{\sigma}^{M} (f(\lambda)) = (\perp_{\sigma}^{M})_{f}(\lambda)$
 $\Rightarrow (\perp_{\sigma}^{M})_{f}(0) \ge (\perp_{\sigma}^{M})_{f}(\lambda).$
 $2 - (\perp_{\sigma}^{M})_{f}(\lambda^{2} \bullet \tau \ell) = \perp_{\sigma}^{M} (f(\lambda^{2} \bullet \tau \ell)) \ge \sigma \bullet \perp (f(\lambda^{2} \bullet \tau \ell)) = MIN\{\sigma \bullet \perp (f(\lambda)), \sigma \bullet \perp (f(\tau \ell))\}$
 $= MIN\{\perp_{\sigma}^{M} (f(\lambda)): \perp_{\sigma}^{M} (f(\tau \ell))\} = MIN\{(\perp_{\sigma}^{M})_{f}(\lambda), (\perp_{\sigma}^{M})_{f}(\tau \ell)\}.$

 $\Rightarrow (\perp_{\sigma}^{M})_{f}$ is σ -multiplicationSÔZ - F -ideal of \wp' .

Theorem 3.9

If $\perp \neq \wp$, then fuzzy λ – translation \perp_{σ}^{T} of $\perp \neq \wp \forall \sigma \in [0,T]$.

Proof

Assume
$$\perp \neq \wp$$
 and let $\sigma \in [0, T]$. Then

$$1 - \perp_{\sigma}^{T} (0) = \perp (0) + \sigma \ge \perp (\hat{\lambda}) + \sigma = \perp_{\sigma}^{T} (\hat{\lambda}).$$

$$2 - \perp_{\sigma}^{T} (\hat{\lambda}^{2} \bullet \tau \ell) = \perp (\hat{\lambda}^{2} \bullet \tau \ell) + \sigma \ge \operatorname{Min} \{\perp (\hat{\lambda}), \perp (\tau \ell)\} + \sigma$$

$$\perp_{\sigma}^{T} (\mathbf{x}^{2} \bullet \tau \ell) \ge \operatorname{Min} \{\perp_{\sigma}^{T} (\mathbf{x}), \perp_{\sigma}^{T} (\tau \ell)\}.$$
From 1 and 2, we have $\perp_{\lambda}^{T} \neq \wp$

Theorem 3.10

Let \perp be fuzzy ideal of \wp . Such that a $\perp_{\sigma}^{T} \neq \wp$ Forsame $\sigma \in [0,T]$ then $\perp \neq \wp$.

Proof

Consider that $\perp_{\sigma}^{T} \neq \wp$ for some $\sigma \in [0, T]$. Then $\perp \neq \wp$. $1 - \perp (0) + \sigma = \perp_{\sigma}^{T} (0) \ge \perp_{\sigma}^{T} (\hat{\lambda}) = \perp (\hat{\lambda}) + \sigma$, this leads $\perp (0) \ge \perp (\hat{\lambda})$. $2 - \perp_{\sigma}^{T} (\hat{\lambda}^{2} \bullet \tau \ell) \ge MIN\{\perp_{\sigma}^{T} (\hat{\lambda}), \perp_{\sigma}^{T} (\tau \ell)\} = MIN\{\perp (\hat{\lambda}) + \sigma, \perp (\tau \ell) + \sigma\} = \perp (\hat{\lambda}^{2} \bullet \tau \ell) + \sigma$ $\ge MIN\{\perp (\hat{\lambda}); \perp (\tau \ell)\} + \sigma \Longrightarrow \perp (\hat{\lambda}^{2} \bullet \tau \ell) \ge MIN\{\perp (\hat{\lambda}), \perp (\tau \ell)\}$ From 1 and 2, we have $\perp \neq \wp$

REFERENCES

[1] K. Iseki &S.Tanaka, An introduction to the theory of BCK Algebras, Math, Japonica, pp.26-23, no.1,1978.

[2] V. Kumbhojkar, M. S. Bapat, Not-so-fuzzy ideals . Fuzzy Set and Systems, pp.237-

BHARAT PUBLICATION

Vol. 3, Issue II, Apr-Jun, 2020

http://www.bharatpublication.com/journal-detail.php?jID=25/IJTSE

243, Vol.3(7).1991.

[3]B. Leek, Y.B. Jun and M.J. Doh,(),Fuzzy translations and fuzzy multiplications of

BCK/BCL algebras, commumkorean math., Vol-24, no.3, pp. 353-360, 2009.

[4] SM Mostafa, A.T. Hameed, NZ Mohammed, Fuzzy Translations of KUS-algebras, Journal of AL-Qadisiyah for computer science and mathematics, 8-16, 8 (2), 2016.

[5] C. Prabpayak, U. Leerawat, On isomorphism of KU Algebras, Scientia Magna., 25-31, Vol. 5(3). 2009.

[6] T. Priya and T. Ramachandran, fuzzy translation and Fuzzy multiplication on Ps-algebras. Inter. J. Innovation in Science and Mathematics, Vol. 2, no.5, 485-489, 2014.

[7]M. Samy, Mostafa, Mokhtar A. Abd-Elnaby and Moustafa M. M. Yousef, Fuzzy Ideals of KU – Algebras, Int. Math. Forum, 3139-3149, Vol. 6(63), 2011.

[8] L.A. Zadeh, Fuzzy Set. Information and control, pp. 338-358, Vol. 8, 1965.